Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the mean of a poisson variate \(X\) is 1 , then \(\sum_{r=0}^{\infty}|r-1| P(X=r)=\)
MathematicsStatisticsAP EAMCETAP EAMCET 2019 (23 Apr Shift 1)
Options:
  • A 1
  • B 0
  • C \(\frac{2}{e}\)
  • D \(\frac{1}{e}\)
Solution:
2776 Upvotes Verified Answer
The correct answer is: \(\frac{2}{e}\)
It is given that mean of a poisson variate \(X\) is \(\lambda=\mathbf{l}\),
\(\begin{aligned}
\because P(X & =r)=\frac{e^{-\lambda} \lambda^r}{r !}=\frac{e^{-1}}{r !} \\
\therefore & \sum_{r=0}^{\infty}|r-1| P(X=r)=\sum_{r=0}^{\infty}|r-1| \frac{e^{-1}}{r !} \\
& =e^{-1}\left[\frac{1}{0 !}+\frac{0}{1 !}+\frac{1}{2 !}+\frac{2}{3 !}+\ldots \ldots \ldots . .\right] \\
& =e^{-1}\left(1+\frac{1}{2 !}+\frac{2}{3 !}+\ldots \ldots . . .\right)=e^{-1}(1+1)=\frac{2}{e}
\end{aligned}\)
Hence, option (c) correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.