Search any question & find its solution
Question:
Answered & Verified by Expert
If the middle points of sides \(\mathrm{BC}, \mathrm{CA} ~\&~ \mathrm{AB}\) of triangle \(A B C\) are respectively \(D, E, F\) then position vector of centre of triangle \(\mathrm{DEF}\), when position vector of \(A, B, C\) are respectively \(\hat{i}+\hat{j}\), \(\hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{k}}+\hat{\mathrm{i}}\) is -
Options:
Solution:
2214 Upvotes
Verified Answer
The correct answer is:
\((2 / 3)(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})\)
The position vector of points \(D, E, F\) are respectively
\(\frac{\mathrm{i}+\mathrm{j}}{2}+\mathrm{k}, \mathrm{i}+\frac{\mathrm{k}+\mathrm{j}}{2} \text { and } \frac{\mathrm{i}+\mathrm{k}}{2}+\mathrm{j}\)
So, position vector of centre of \(\triangle \mathrm{DEF}\)
\(=\frac{1}{3}\left[\frac{\mathrm{i}+\mathrm{j}}{2}+\mathrm{k}+\mathrm{i} \frac{\mathrm{k}+\mathrm{j}}{2}+\frac{\mathrm{i}+\mathrm{k}}{2}+\mathrm{j}\right]=\frac{2}{3}[\mathrm{i}+\mathrm{j}+\mathrm{k}]\)
\(\frac{\mathrm{i}+\mathrm{j}}{2}+\mathrm{k}, \mathrm{i}+\frac{\mathrm{k}+\mathrm{j}}{2} \text { and } \frac{\mathrm{i}+\mathrm{k}}{2}+\mathrm{j}\)
So, position vector of centre of \(\triangle \mathrm{DEF}\)
\(=\frac{1}{3}\left[\frac{\mathrm{i}+\mathrm{j}}{2}+\mathrm{k}+\mathrm{i} \frac{\mathrm{k}+\mathrm{j}}{2}+\frac{\mathrm{i}+\mathrm{k}}{2}+\mathrm{j}\right]=\frac{2}{3}[\mathrm{i}+\mathrm{j}+\mathrm{k}]\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.