Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the middle term in the expansion of $(1+x)^{2 n}$ is the greatest term, then $x$ lies in the interval
MathematicsBinomial TheoremAP EAMCETAP EAMCET 2016
Options:
  • A $\left(\frac{n}{n+1}, \frac{n+1}{n}\right)$
  • B $\left(\frac{n+1}{n}, \frac{n}{n+1}\right)$
  • C $(n-2, n)$
  • D $(n-1, n)$
Solution:
1903 Upvotes Verified Answer
The correct answer is: $\left(\frac{n}{n+1}, \frac{n+1}{n}\right)$
In the expansion of $(1+x)^{2 n}$, middle term is ${ }^{2 n} \mathrm{C}_n x^n$. Since, middle term is the greatest term.
$\therefore{ }^{2 n} \mathrm{C}_n x^n>{ }^{2 n} \mathrm{C}_{n-1} x^{n-1}$
$\text { and }{ }^{2 n} \mathrm{C}_r x^n>{ }^{2 n} \mathrm{C}_{n+1} x^{n+1}$
$\begin{aligned}
& \Rightarrow \quad x>\frac{{ }^{2 n} \mathrm{C}_{n-1}}{{ }^{2 n} \mathrm{C}_n} \text { and } x < \frac{{ }^{2 n} \mathrm{C}_n}{{ }^{2 n} \mathrm{C}_{n+1}} \\
& \text { Hence, } x \in\left(\frac{{ }^{2 n} \mathrm{C}_n}{{ }^{2 n} \mathrm{C}_{n+1}}, \frac{{ }^{2 n} \mathrm{C}_n}{{ }^{2 n} \mathrm{C}_{n+1}}\right)
\end{aligned}$
Hence, $x \in\left(\frac{{ }^{2 n} \mathrm{C}_n}{{ }^{2 n} \mathrm{C}_{n+1}}, \frac{{ }^{2 n} \mathrm{C}_n}{{ }^{2 n} \mathrm{C}_{n+1}}\right)$
$\begin{aligned}
& x \in\left(\begin{array}{c}
\frac{(2 n) !}{(n-1) !(2 n-n+1)} \times \frac{n !(2 n-n) !}{(2 n) !} \\
\frac{(2 n) !}{n !(2 n-n) !} \times \frac{(n-1) !(2 n-n+1)}{(2 n) !}
\end{array}\right) \\
& x \in\left(\frac{n(n-1) ! n !}{n(n-1) !(n+1) n !}, \frac{(n+1) n !(n-1) !}{n(n-1) ! n !}\right) \\
& \therefore \quad x \in\left(\frac{n}{n+1}, \frac{n+1}{n}\right)
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.