Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the molar solubility (in $\mathrm{mol} \mathrm{L}^{-1}$ ) of a sparingly soluble salt $A B_4$ is $S$ and the corresponding solubility product is $K_{\text {sp }}$, then $s$ in terms of $K_{\mathrm{sp}}$ is given by the relation
ChemistryIonic EquilibriumAP EAMCETAP EAMCET 2021 (25 Aug Shift 2)
Options:
  • A $S=\left(\frac{K_{\mathrm{sp}}}{128}\right)^{1 / 4}$
  • B $S=\left(\frac{K_{\mathrm{sp}}}{256}\right)^{1 / 5}$
  • C $S=\left(256 K_{\mathrm{sp}}\right)^{1 / 5}$
  • D $S=\left(128 K_{\mathrm{sp}}\right)^{1 / 4}$
Solution:
2831 Upvotes Verified Answer
The correct answer is: $S=\left(\frac{K_{\mathrm{sp}}}{256}\right)^{1 / 5}$
For the reaction,
$\begin{array}{ccc}A B_4(s) \stackrel{(a q)}{\rightleftharpoons} & A^{4+}(a q)+4 B^{-}(a q) \\ - & S & 4 S\end{array}$
Molar solubility (in $\mathrm{mol} / \mathrm{L}$ ) of a sparingly soluble salt $A B_4$ is ' $S$ ' and corresponding solubility product is $K_{\mathrm{sp}}$.
$S$ in term of $K_{\mathrm{sp}}$ is given by above relation is
$$
\begin{aligned}
& K_{\text {sp }}=\left[A^{4+}\right]\left[B^{-}\right]^4 \\
& K_{\text {sp }}=S \times(4 S)^4 \\
& K_{\text {sp }}=256 S^5
\end{aligned}
$$

Hence, the molar solubility, $S=\left(\frac{K_{\mathrm{sp}}}{256}\right)^{\frac{1}{5}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.