Search any question & find its solution
Question:
Answered & Verified by Expert
If the normal drawn from the origin to the straight line $2 x+7 y+6=0$ makes an angle 0 with the positive $X$-axis, then $0=$
Options:
Solution:
1799 Upvotes
Verified Answer
The correct answer is:
$\pi+\tan ^{-1} \frac{7}{2}$
Given equation of straight line,

$2 x+7 y+6=0 \Rightarrow \frac{x}{-3}+\frac{y}{-6 / 7}=1$
So, angle $\theta=\pi+\angle A O M$
$\begin{aligned} & =\pi+\alpha[\text { Let } \angle A O M=\alpha], \\ & \because(\tan \alpha) \times \text { Slope of line }=-1 \\ & \Rightarrow(\tan \alpha) \times\left(-\frac{2}{7}\right)=-1 \\ & \Rightarrow \quad \tan \alpha=7 / 2\end{aligned}$
So, required angle $\theta=\pi+\tan ^{-1} \frac{7}{2}$ Hence, option (c) is correct.

$2 x+7 y+6=0 \Rightarrow \frac{x}{-3}+\frac{y}{-6 / 7}=1$
So, angle $\theta=\pi+\angle A O M$
$\begin{aligned} & =\pi+\alpha[\text { Let } \angle A O M=\alpha], \\ & \because(\tan \alpha) \times \text { Slope of line }=-1 \\ & \Rightarrow(\tan \alpha) \times\left(-\frac{2}{7}\right)=-1 \\ & \Rightarrow \quad \tan \alpha=7 / 2\end{aligned}$
So, required angle $\theta=\pi+\tan ^{-1} \frac{7}{2}$ Hence, option (c) is correct.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.