Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the number of common tangents to the pair of circles $x^2+y^2-2 x+4 y-4=0$ and $x^2+y^2+4 x-4 y+\alpha=0$ is 4 , then the least integral value of $\alpha$ is
MathematicsCircleTS EAMCETTS EAMCET 2019 (04 May Shift 1)
Options:
  • A 4
  • B 5
  • C 6
  • D 7
Solution:
1777 Upvotes Verified Answer
The correct answer is: 5
We have,
$$
\begin{gathered}
x^2+y^2-2 x+4 y-4=0 \\
\text { and } x^2+y^2+4 x-4 y+\alpha=0 \\
c_1=(1,-2), r_1=\sqrt{1+4+4}=3 \\
c_2=(-2,2), r_2=\sqrt{4+4-\alpha}=\sqrt{8-\alpha}
\end{gathered}
$$
Circle have 4 common tangents
$$
\begin{aligned}
& \therefore c_1 c_2>r_1+r_2 \\
& \Rightarrow \quad \sqrt{(1+2)^2+(-2-2)^2}>3+\sqrt{8-\alpha} \\
& \Rightarrow \quad \sqrt{9+16}>3+\sqrt{8-\alpha} \\
& \Rightarrow \quad 2>\sqrt{8-\alpha} \\
& \Rightarrow \quad 8-\alpha < 4 \Rightarrow \alpha>4
\end{aligned}
$$
$\therefore$ Least integral value of $\alpha=5$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.