Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the orthocenter of the triangle formed by the lines 2x+3 y-1=0, x+2y+1=0 and ax+by-1=0 lies at origin, then 1a+1b=
MathematicsStraight LinesAP EAMCETAP EAMCET 2021 (19 Aug Shift 2)
Options:
  • A 0
  • B 160
  • C 18
  • D 4
Solution:
1557 Upvotes Verified Answer
The correct answer is: 160

We have triangle ABC

AB: 2x+3y-1=0  ...1

Slope m1=-23

BC: x+2y+1=0  ...2

Slope m2=-12

CA:ax+by-1=0  ...3

Slope m3=-ab

We know, the orthocenter of a triangle is the point of intersection of altitudes passing through the vertices of the triangle.

Here we have altitudes AD, BE and CF

So, the family of line passing through the vertex B,

is, 2x+3y-1+λx+2y+1=0  ...4

As, the orthocentre is origin,

Substituting x=0 and y=0 in 4, we get λ=1,

So, the equation of altitude BE is 3x+5y=0  ...5

Slope mBE=-35

As, BEAC

So, the product of slopes of BE and side AC=-1

-ab×-35=-13a=-5b  ...6

And, the family of lines passing through the vertex A is, 

2x+3y-1+μax+by-1=0  ...7

As, the orthocentre is origin,

Substituting x=0 and y=0 in 7, we get, μ=-1

So, the equation of altitude AD is 2-ax+3-by=0  ...8

As, AD side BC.

So, product of their slopes=-1

-2-a3-b×-12=-1 2-a23-b=-1 a+2b=8   ...9

Solving equations 6 and 9, we get

a=-40 and b=-24.

Hence, 1a+1b=-140+124=160

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.