Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the period of the function $f(x)=\sin 5 x \cos 3 x$ is $\alpha$, then $\cos \alpha=$
MathematicsFunctionsTS EAMCETTS EAMCET 2018 (05 May Shift 2)
Options:
  • A 1
  • B $\frac{1}{\sqrt{2}}$
  • C $-\frac{1}{2}$
  • D -1
Solution:
2546 Upvotes Verified Answer
The correct answer is: -1
We have, $f(x)=\sin 5 x \cdot \cos 3 x$.
$$
=\frac{1}{2}(2 \sin 5 x \cdot \cos 3 x)=\frac{1}{2}(\sin 8 x+\sin 2 x)
$$
Clearly, $\sin 8 x$ is periodic with period $\frac{2 \pi}{8}=\frac{\pi}{4}$ and $\sin 2 x$ is periodic with period $\frac{2 \pi}{2}=\pi$.
$\therefore$ Period of $f(x)=$ L.C.M $\left\{\frac{\pi}{4}, \pi\right\}$
$$
\frac{\operatorname{L.C} M\{\pi, \pi\}}{\operatorname{H.CF}\{4,1\}}=\frac{\pi}{1}=\pi \Rightarrow \alpha=\pi
$$
Hence, $\cos \alpha=\cos \pi=-1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.