Search any question & find its solution
Question:
Answered & Verified by Expert
If the point $z_{1}=1+i$ where $i=\sqrt{-1}$ is the reflection of a point $\mathrm{z}_{2}=\mathrm{x}+$ iy in the line $\mathrm{i} \overline{\mathrm{z}}-\mathrm{i} \mathrm{z}=5$, then the point $\mathrm{z}_{2}$ is
Options:
Solution:
1786 Upvotes
Verified Answer
The correct answer is:
$\quad 1+4 \mathrm{i}$
Let $z=a+b i$ 74

$\Rightarrow \bar{z}=\mathrm{a}-\mathrm{bi}$
$\therefore \mathrm{i} \overline{\mathrm{z}}-\mathrm{iz}=\mathrm{i}[(\mathrm{a}-\mathrm{bi})-(\mathrm{a}+\mathrm{bi})]=5$
$\Rightarrow \mathrm{i}[-2 \mathrm{bi}]=5$
$\Rightarrow \mathrm{b}=\frac{5}{2}$
So from figure it is clear that
$x=1, y=\frac{5}{2}+\frac{3}{2}=4$
$\mathrm{z}_{2}=1+4 \mathrm{i}$

$\Rightarrow \bar{z}=\mathrm{a}-\mathrm{bi}$
$\therefore \mathrm{i} \overline{\mathrm{z}}-\mathrm{iz}=\mathrm{i}[(\mathrm{a}-\mathrm{bi})-(\mathrm{a}+\mathrm{bi})]=5$
$\Rightarrow \mathrm{i}[-2 \mathrm{bi}]=5$
$\Rightarrow \mathrm{b}=\frac{5}{2}$
So from figure it is clear that
$x=1, y=\frac{5}{2}+\frac{3}{2}=4$
$\mathrm{z}_{2}=1+4 \mathrm{i}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.