Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the points having the position vectors $3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}-\hat{\mathbf{k}}, 2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}-4 \hat{\mathbf{k}},-\hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}}$ and $4 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}+\lambda \hat{\mathbf{k}}$ are coplanar, then $\lambda=$
MathematicsThree Dimensional GeometryJEE Main
Options:
  • A $\frac{46}{17}$
  • B 8
  • C -8
  • D $\frac{146}{17}$
Solution:
1354 Upvotes Verified Answer
The correct answer is: $\frac{46}{17}$
Let $A, B, C$ and $D$ are the position vectors of four points given as
$$
\begin{aligned}
& A(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-\hat{\mathrm{k}}), B(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}), C(-\hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}}) \\
& \text { and } D(4 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+\lambda \hat{\mathrm{k}})
\end{aligned}
$$
Here,
$$
\begin{aligned}
& \mathrm{AB}=-\hat{\mathrm{i}}+5 \hat{\mathrm{j}}-3 \hat{\mathrm{k}} \\
& \mathrm{BC}=-3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}
\end{aligned}
$$
and
$$
C D=5 \hat{i}+4 \hat{j}+(\lambda-2) \hat{k}
$$
As given that, these points are coplanar, therefore $[\mathrm{AB} \quad \mathrm{BC} \mathrm{CD}]=0$
$$
\begin{aligned}
& \left|\begin{array}{ccc}
-1 & 5 & -3 \\
-3 & -2 & 6 \\
5 & 4 & \lambda-2
\end{array}\right|=0 \\
\Rightarrow \quad & -1(-2 \lambda+4-24)-5(-3(\lambda-2)-30) \\
\Rightarrow \quad & -3(-12+10)=0 \\
\Rightarrow \quad & 17 \lambda+20+20+15(\lambda-2)+150+36-30=0 \\
\Rightarrow \quad & 17 \lambda+146=0 \Rightarrow \lambda=-\frac{146}{17}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.