Search any question & find its solution
Question:
Answered & Verified by Expert
If the position vector of one end of the line segment $A B$ be $2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$ and the position vector of its middle point be $3(\mathbf{i}+\mathbf{j}+\mathbf{k})$, then the position vector of the other end is
Options:
Solution:
2113 Upvotes
Verified Answer
The correct answer is:
$4 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k}$
$\overrightarrow{O A}=2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}, \quad \overrightarrow{O P}=3(\mathbf{i}+\mathbf{j}+\mathbf{k}), \quad \overrightarrow{O B}=?$
we have $\overrightarrow{O P}=\frac{\overrightarrow{O A}+\overrightarrow{O B}}{2}$

$\begin{aligned}
\Rightarrow \overrightarrow{O B} & =2 \overrightarrow{O P}-\overrightarrow{O A} \\
& =4 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k}
\end{aligned}$
Trick : By inspection, middle point of $4 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k}$ and $2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$ is $3(\mathbf{i}+\mathbf{j}+\mathbf{k})$.
we have $\overrightarrow{O P}=\frac{\overrightarrow{O A}+\overrightarrow{O B}}{2}$

$\begin{aligned}
\Rightarrow \overrightarrow{O B} & =2 \overrightarrow{O P}-\overrightarrow{O A} \\
& =4 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k}
\end{aligned}$
Trick : By inspection, middle point of $4 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k}$ and $2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$ is $3(\mathbf{i}+\mathbf{j}+\mathbf{k})$.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.