Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the position vectors of the points $A$ and $B$ are $2 \hat{i}+3 \hat{j}-\hat{k}$ and $\hat{i}-\hat{j}+2 \hat{k}$ respectively, then the unit vector along $\overrightarrow{\mathrm{BA}}$ and in the direction of $\overrightarrow{\mathrm{AB}}$ is
MathematicsVector AlgebraAP EAMCETAP EAMCET 2023 (17 May Shift 2)
Options:
  • A $\frac{1}{\sqrt{14}}(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})$
  • B $\frac{1}{\sqrt{26}}(-\hat{\mathrm{i}}-4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
  • C $\frac{1}{\sqrt{26}}(-3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+\hat{\mathrm{k}})$
  • D $\frac{1}{\sqrt{22}}(3 \hat{i}-4 \hat{j}+3 \hat{k})$
Solution:
2656 Upvotes Verified Answer
The correct answer is: $\frac{1}{\sqrt{26}}(-\hat{\mathrm{i}}-4 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
$\overrightarrow{\mathrm{AB}}=-\hat{i}-4 \hat{j}+3 \hat{k}$ So, $\overrightarrow{\mathrm{BA}}=\hat{i}-4 \hat{j}+3 \hat{k}$
Unit vector along $\overrightarrow{\mathrm{BA}}$ and in direction $\overrightarrow{\mathrm{AB}}$ is $=\frac{\overrightarrow{\mathrm{AB}}}{|\overrightarrow{\mathrm{BA}}|}$
$=\frac{-\hat{i}-4 \hat{j}+3 \hat{k}}{\sqrt{1+16+9}}=\frac{-\hat{i}-4 \hat{j}+3 \hat{k}}{\sqrt{26}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.