Search any question & find its solution
Question:
Answered & Verified by Expert
If the potential of a capacitor having capacity $6 \mu \mathrm{F}$ is increased from $10 \mathrm{~V}$ to $20 \mathrm{~V}$, then increase in its energywill be
Options:
Solution:
1463 Upvotes
Verified Answer
The correct answer is:
$9 \times 10^{-4} \mathrm{~J}$
Capacitance of capacitor (C) $=6 \mu \mathrm{F}$ $=6 \times 10^{-6} \mathrm{~F}$; Initial potential $\left(\mathrm{V}_{1}\right)=10 \mathrm{~V}$ and
final potential $\left(\mathrm{V}_{2}\right)=20 \mathrm{~V}$.
The increase in energy $(\Delta \mathrm{U})$
$$
\begin{array}{l}
=\frac{1}{2} \mathrm{C}\left(\mathrm{V}_{2}^{2}-\mathrm{V}_{1}^{2}\right) \\
=\frac{1}{2} \times\left(6 \times 10^{-6}\right) \times\left[(20)^{2}-(10)^{2}\right] \\
=\left(3 \times 10^{-6}\right) \times 300=9 \times 10^{-4} \mathrm{~J} .
\end{array}
$$
final potential $\left(\mathrm{V}_{2}\right)=20 \mathrm{~V}$.
The increase in energy $(\Delta \mathrm{U})$
$$
\begin{array}{l}
=\frac{1}{2} \mathrm{C}\left(\mathrm{V}_{2}^{2}-\mathrm{V}_{1}^{2}\right) \\
=\frac{1}{2} \times\left(6 \times 10^{-6}\right) \times\left[(20)^{2}-(10)^{2}\right] \\
=\left(3 \times 10^{-6}\right) \times 300=9 \times 10^{-4} \mathrm{~J} .
\end{array}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.