Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the radius of a sphere is measured as $9 \mathrm{~cm}$ with an error of $0.03 \mathrm{~cm}$, then find the approximating error in calculating its volume.
MathematicsApplication of DerivativesBITSATBITSAT 2021
Options:
  • A $2.46 \pi \mathrm{cm}^{3}$
  • B $8.62 \pi \mathrm{cm}^{3}$
  • C $9.72 \pi \mathrm{cm}^{3}$
  • D $7.6 \pi \mathrm{cm}^{3}$
Solution:
1619 Upvotes Verified Answer
The correct answer is: $9.72 \pi \mathrm{cm}^{3}$
Let $r$ be the radius of the sphere and $\Delta r$ be the error in measuring the radius. Then, $r=9 \mathrm{~cm}$ and $\Delta r=0.03 \mathrm{~cm}$

Let $V$ be the volume of the sphere. Then,

$\begin{array}{l}

\mathrm{V}=\frac{4}{3} \pi r^{3} \\

\Rightarrow \frac{\mathrm{dV}}{\mathrm{dr}}=4 \pi r^{2} \\

\Rightarrow\left(\frac{\mathrm{dV}}{\mathrm{dr}}\right)_{r=9}=4 \pi \times 9^{2}=324 \pi

\end{array}$

Let $\Delta \mathrm{V}$ be the error in $\mathrm{V}$ due to error $\Delta \mathrm{r}$ in $r$.

Then,

$\begin{array}{l}

\Delta \mathrm{V}=\frac{\mathrm{dV}}{\mathrm{dr}} \Delta r \\

\Rightarrow \Delta \mathrm{V}=324 \pi \times 0.03=9.72 \pi \mathrm{cm}^{3}

\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.