Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the radius of an atom of an element which forms a body centered cubic unit cell is 173.2 $\mathrm{pm}$, the volume of unit cell in $\mathrm{cm}^3$ is
ChemistrySolid StateAP EAMCETAP EAMCET 2019 (21 Apr Shift 1)
Options:
  • A $3.12 \times 10^{-23}$
  • B $6.4 \times 10^{-23}$
  • C $3.2 \times 10^{-24}$
  • D $2.13 \times 10^{-23}$
Solution:
1240 Upvotes Verified Answer
The correct answer is: $6.4 \times 10^{-23}$
Given,
Radius of an atom in body centered cubic (bcc) unit cell $=173.2 \mathrm{pm}$.
$\because$ For bcc structure
$$
\sqrt{3} \cdot a=4 r
$$
where, $a=$ edge-length
$r=$ radius of atom
and $a^3=V$ (volume of cubic unit cell).
$\therefore \quad a=\frac{4}{\sqrt{3}} \cdot r$
or, $\quad a=\frac{4}{1.73} \times 173.2 \times 10^{-10} \mathrm{~cm}$
$a=400 \times 10^{-10} \mathrm{~cm}$
Therefore,
$$
\begin{aligned}
a^3 & =V=\left[400 \times 10^{-10}\right]^3 \\
& =6,40,00,000 \times 10^{-30} \\
& =6.4 \times 10^{-23} \mathrm{~cm}^3
\end{aligned}
$$

Hence, $6.4 \times 10^{-23} \mathrm{~cm}^3$ is the correct answer.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.