Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the ratio of lengths, radii and Young's modulus of steel and brass wires shown in the figure are $a, b$ and $c$ respectively, the ratio between the increase in lengths of brass and steel wires would be

PhysicsMechanical Properties of SolidsTS EAMCETTS EAMCET 2009
Options:
  • A $\frac{b^2 a}{2 c}$
  • B $\frac{b c}{2 a^2}$
  • C $\frac{b a^2}{2 c}$
  • D $\frac{a}{2 b^2 c}$
Solution:
2874 Upvotes Verified Answer
The correct answer is: $\frac{b^2 a}{2 c}$
Free body diagram of the two blocks are


Given, $\quad \frac{l_1}{l_2}=a, \frac{r_1}{r_2}=b, \frac{Y_1}{Y_2}=c$
Let Young's modulus of steel is $Y_1$ and of brass is $Y_2$.


Dividing Eq. (i) by Eq. (ii), we get
$\frac{Y_1}{Y_2}=\frac{\frac{F_1 \cdot l_1}{A_1 \cdot \Delta l_1}}{\frac{F_2 \cdot l_2}{A_2 \cdot \Delta l_2}}$

Force on steel wire from free body diagram
$T=F_1=(2 g) \text { newton }$
Force on brass wire from free body diagram
$F_2=T^{\prime}=T+2 g=(4 g) \text { newton }$
Now, putting the value of $F_1, F_2$, in Eq. (iii), we get
$\frac{Y_1}{Y_2}=\left(\frac{2 g}{4 g}\right) \cdot\left(\frac{\pi r_2^2}{\pi r_1^2}\right) \cdot\left[\frac{l_1}{l_2}\right] \cdot\left(\frac{\Delta l_2}{\Delta l_1}\right)$
or $\quad c=\frac{1}{2}\left(\frac{1}{b^2}\right) \cdot a\left(\frac{\Delta l_2}{\Delta l_1}\right)$
or $\quad \frac{\Delta l_1}{\Delta l_2}=\left(\frac{a}{2 b^2 c}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.