Search any question & find its solution
Question:
Answered & Verified by Expert
If the ratio of the roots of the equation \(\mathrm{px}^2+\mathrm{qx}+\mathrm{r}=0\) is \(a: b\), then \(\frac{\mathrm{ab}}{(\mathrm{a}+\mathrm{b})^2}=\)
Options:
Solution:
1353 Upvotes
Verified Answer
The correct answer is:
\(\frac{\mathrm{pr}}{\mathrm{q}^2}\)
Hints: Let roots are \(a \alpha\) and \(b \alpha\)
\(\Rightarrow(\mathrm{a}+\mathrm{b}) \alpha=\frac{-\mathrm{q}}{\mathrm{p}}\)
\(\begin{aligned} & a b \alpha^2=\frac{r}{p} \\ & \frac{a b \alpha^2}{(a+b)^2 \alpha^2}=\frac{r}{p} \cdot \frac{p^2}{q^2} \\ & \frac{a b}{(a+b)^2}=\frac{1 p}{q^2}\end{aligned}\)
\(\Rightarrow(\mathrm{a}+\mathrm{b}) \alpha=\frac{-\mathrm{q}}{\mathrm{p}}\)
\(\begin{aligned} & a b \alpha^2=\frac{r}{p} \\ & \frac{a b \alpha^2}{(a+b)^2 \alpha^2}=\frac{r}{p} \cdot \frac{p^2}{q^2} \\ & \frac{a b}{(a+b)^2}=\frac{1 p}{q^2}\end{aligned}\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.