Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the roots of the equation $x^{3}+a x^{2}+b x+c=0$ are in $\mathrm{AP}$, then $2 a^{3}-9 a b$ is equal to
MathematicsQuadratic EquationKCETKCET 2013
Options:
  • A $9 \mathrm{c}$
  • B $18 \mathrm{c}$
  • C $27 \mathrm{c}$
  • D $-27 c$
Solution:
1942 Upvotes Verified Answer
The correct answer is: $-27 c$
Given equation is
$x^{3}+a x^{2}+b x+c=0$
Let $(\alpha, \beta, \gamma)$ be the roots of the given equation then according to given condition, we have
$2 \beta=\alpha+\gamma...(i)(\because \alpha, \beta, \gamma are in AP)$
$\begin{array}{ll}
\text { Now, } & \alpha+\beta+\gamma=-a \\
\Rightarrow & \beta+2 \beta=-a (Using Eq. (i)\\
\Rightarrow & \beta=-\frac{a}{3}
\end{array}$
Since, $\beta$ is a root of given equation.
$\begin{array}{lc}
\text { So, } & \beta^{3}+a \beta^{2}+b \beta+c=0 \\
\Rightarrow & \left(-\frac{a}{3}\right)^{3}+a\left(\frac{-a}{3}\right)^{2}+b\left(\frac{-a}{3}\right)+c=0 \\
\Rightarrow & -\frac{a^{3}}{27}+\frac{a^{3}}{9}-\frac{a b}{3}+c=0 \\
\Rightarrow & -a^{3}+3 a^{3}-9 a b+27 c=0 \\
\Rightarrow & 2 a^{3}-9 a b+27 c=0
\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.