Search any question & find its solution
Question:
Answered & Verified by Expert
If the roots of $x^2+x+a=0$ exceed $a$, then
Options:
Solution:
2577 Upvotes
Verified Answer
The correct answer is:
$a \lt -2$
If the roots of the quadratic equation $a x^2+b x+c=0$ exceed a number $k$, then $a k^2+b k+c\gt0$ if $a\gt0, b^2-4 a c \geq 0$ and sum of the roots $\gt2 k$ Therefore, if the roots of $x^2+x+a=0$ exceed a number $a$, then $a^2+a+a\gt0,1-4 a \geq 0$ and $-1\gt2 a$
$\Rightarrow a(a+2)\gt0, a \leq \frac{1}{4}$ and $a \lt -\frac{1}{2}$
$\Rightarrow a\gt0$ or $a \lt -2, a \lt \frac{1}{4}$ and $a \lt -\frac{1}{2}$
Hence $a \lt -2$.
$\Rightarrow a(a+2)\gt0, a \leq \frac{1}{4}$ and $a \lt -\frac{1}{2}$
$\Rightarrow a\gt0$ or $a \lt -2, a \lt \frac{1}{4}$ and $a \lt -\frac{1}{2}$
Hence $a \lt -2$.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.