Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the slope of one of the two lines $\frac{x^2}{a}+\frac{2 x y}{h}+\frac{y^2}{b}=0$ is twice that of the other, then $a b: h^2=$
MathematicsPair of LinesMHT CETMHT CET 2022 (07 Aug Shift 2)
Options:
  • A 8:9
  • B 9:8
  • C $1: 2$
  • D $2: 1$
Solution:
1962 Upvotes Verified Answer
The correct answer is: 9:8
$\begin{aligned} & \frac{x^2}{a}+\frac{2 x y}{h}+\frac{y^2}{b}=0 \\ & \Rightarrow \frac{1}{b}\left(\frac{y}{x}\right)^2+\frac{2}{h}\left(\frac{y}{x}\right)+\frac{1}{a}=0 \\ & \Rightarrow m_1+m_2=\frac{\frac{-2}{h}}{\frac{1}{b}}=\frac{-2 b}{h} \text { and } m_1 m_2=\frac{\frac{1}{a}}{\frac{1}{b}}=\frac{b}{a}\end{aligned}$

$\begin{aligned} & \text { from (1) and } 2\left(\frac{-2 b}{3 h}\right)^2=\frac{b}{a} \\ & \Rightarrow 2 \times \frac{4 b^2}{9 h^2}=\frac{b}{a} \\ & \Rightarrow \frac{a b}{h^2}=\frac{9}{8}=9: 8\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.