Search any question & find its solution
Question:
Answered & Verified by Expert
If the slope of the tangent to the curve at any point $\mathrm{P}(x, y)$ is $\frac{y}{x}-\cos ^{2} \frac{y}{x}$, then the equation of a curve passing through $\left(1, \frac{\pi}{4}\right)$ is
Options:
Solution:
1020 Upvotes
Verified Answer
The correct answer is:
$\tan \left(\frac{y}{x}\right)+\log x=1$
According to the condition,
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{y}{x}-\cos ^{2} \frac{y}{x} \ldots \text { (i) }$
This is a homogeneous differential equation Substituting $y=v x$, we get
$\begin{array}{l}
v+x \frac{\mathrm{dv}}{\mathrm{dx}}=v-\cos ^{2} v \\
\Rightarrow x \frac{\mathrm{dv}}{\mathrm{dx}}=-\cos ^{2} v \\
\Rightarrow \int \sec ^{2} \mathrm{vdv}=-\int \frac{\mathrm{dx}}{\mathrm{x}} \\
\Rightarrow \tan v=-\log x+\mathrm{C} \\
\Rightarrow \tan \frac{y}{x}+\log x=\mathrm{C}
\end{array}$
Substituting $\mathrm{x}=1, y=\frac{\pi}{4}$, we get $\mathrm{C}=1$
Thus, we get
$\tan \left(\frac{y}{x}\right)+\log x=1$
which is the required solution.
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{y}{x}-\cos ^{2} \frac{y}{x} \ldots \text { (i) }$
This is a homogeneous differential equation Substituting $y=v x$, we get
$\begin{array}{l}
v+x \frac{\mathrm{dv}}{\mathrm{dx}}=v-\cos ^{2} v \\
\Rightarrow x \frac{\mathrm{dv}}{\mathrm{dx}}=-\cos ^{2} v \\
\Rightarrow \int \sec ^{2} \mathrm{vdv}=-\int \frac{\mathrm{dx}}{\mathrm{x}} \\
\Rightarrow \tan v=-\log x+\mathrm{C} \\
\Rightarrow \tan \frac{y}{x}+\log x=\mathrm{C}
\end{array}$
Substituting $\mathrm{x}=1, y=\frac{\pi}{4}$, we get $\mathrm{C}=1$
Thus, we get
$\tan \left(\frac{y}{x}\right)+\log x=1$
which is the required solution.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.