Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the solution $y(x)$ of the given differential equation $\left(\mathrm{e}^y+1\right) \cos x \mathrm{~d} x+\mathrm{e}^y \sin x \mathrm{~d} y=0$ passes through the point $\left(\frac{\pi}{2}, 0\right)$, then the value of $\mathrm{e}^{y\left(\frac{\pi}{6}\right)}$ is equal to_________
MathematicsDifferential EquationsJEE MainJEE Main 2024 (06 Apr Shift 2)
Solution:
1722 Upvotes Verified Answer
The correct answer is: 3
$\begin{aligned}
& \left(\mathrm{e}^{\mathrm{y}}+1\right) \cos \mathrm{x} \mathrm{dx}+\mathrm{e}^{\mathrm{y}} \sin \mathrm{x} d \mathrm{y}=0 \\
& \Rightarrow \mathrm{d}\left(\left(\mathrm{e}^{\mathrm{y}}+1\right) \sin \mathrm{x}\right)=0 \\
& \left(\mathrm{e}^{\mathrm{y}}+1\right) \sin \mathrm{x}=\mathrm{C}
\end{aligned}$
It passes through $\left(\frac{\pi}{2}, 0\right)$
$\Rightarrow \mathrm{c}=2$
Now, $x=\frac{\pi}{6}$
$\Rightarrow \mathrm{e}^{\mathrm{y}}=3$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.