Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the straight line $x \cos \alpha+y \sin \alpha=P$ intersects the circle $x^2+y^2=a^2$ at $A$ and $B$, then the equation of the circle with diameter $\overline{A B}$ is
MathematicsCircleTS EAMCETTS EAMCET 2021 (06 Aug Shift 1)
Options:
  • A $x^2+y^2-2 P x \cos \alpha-2 P y \sin \alpha+2 P^2-a^2=0$
  • B $x^2+y^2+2 P x \cos \alpha-2 P y \sin \alpha+2 P^2+a^2=0$
  • C $x^2+y^2-2 P x \cos \alpha+2 P y \sin \alpha-2 P^2-a^2=0$
  • D $x^2+y^2-2 P x \cos \alpha-2 P y \sin \alpha-2 P^2+a^2=0$
Solution:
2314 Upvotes Verified Answer
The correct answer is: $x^2+y^2-2 P x \cos \alpha-2 P y \sin \alpha+2 P^2-a^2=0$
Let the circle be


$$
(\text { as } s+\lambda L=0)
$$
Its centre is $\left(-\frac{\lambda \cos \alpha}{2},-\frac{\lambda \sin \alpha}{2}\right)$
$\because$ Centre lies on $x \cos \alpha+y \sin \alpha=P$
$$
\begin{aligned}
& \therefore \frac{(-\lambda \cos \alpha)}{2} \cos \alpha+\left(-\frac{\lambda \sin \alpha}{2}\right) \sin \alpha=P \\
& \Rightarrow \lambda=-2 P
\end{aligned}
$$
From Eq. (i),
$$
x^2+y^2-2 P x \cos \alpha-2 P y \sin \alpha+2 P^2-a^2=0
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.