Search any question & find its solution
Question:
Answered & Verified by Expert
If the straight line $x \cos \alpha+y \sin \alpha=P$ intersects the circle $x^2+y^2=a^2$ at $A$ and $B$, then the equation of the circle with diameter $\overline{A B}$ is
Options:
Solution:
2314 Upvotes
Verified Answer
The correct answer is:
$x^2+y^2-2 P x \cos \alpha-2 P y \sin \alpha+2 P^2-a^2=0$
Let the circle be

$$
(\text { as } s+\lambda L=0)
$$
Its centre is $\left(-\frac{\lambda \cos \alpha}{2},-\frac{\lambda \sin \alpha}{2}\right)$
$\because$ Centre lies on $x \cos \alpha+y \sin \alpha=P$
$$
\begin{aligned}
& \therefore \frac{(-\lambda \cos \alpha)}{2} \cos \alpha+\left(-\frac{\lambda \sin \alpha}{2}\right) \sin \alpha=P \\
& \Rightarrow \lambda=-2 P
\end{aligned}
$$
From Eq. (i),
$$
x^2+y^2-2 P x \cos \alpha-2 P y \sin \alpha+2 P^2-a^2=0
$$

$$
(\text { as } s+\lambda L=0)
$$
Its centre is $\left(-\frac{\lambda \cos \alpha}{2},-\frac{\lambda \sin \alpha}{2}\right)$
$\because$ Centre lies on $x \cos \alpha+y \sin \alpha=P$
$$
\begin{aligned}
& \therefore \frac{(-\lambda \cos \alpha)}{2} \cos \alpha+\left(-\frac{\lambda \sin \alpha}{2}\right) \sin \alpha=P \\
& \Rightarrow \lambda=-2 P
\end{aligned}
$$
From Eq. (i),
$$
x^2+y^2-2 P x \cos \alpha-2 P y \sin \alpha+2 P^2-a^2=0
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.