Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the straight lines $x-2 y=0$ and $k x+y=1$ intersect at the
point $\left(1, \frac{1}{2}\right)$, then what is the value of $k ?$
MathematicsStraight LinesNDANDA 2010 (Phase 2)
Options:
  • A 1
  • B 2
  • C $1 / 2$
  • D $-1 / 2$
Solution:
2206 Upvotes Verified Answer
The correct answer is: $1 / 2$
Since. the straight lines $x-2 y=0$ and $k x+y=1$ intersect at the point $\left(1, \frac{1}{2}\right)$.
$\therefore \quad$ The point $\left(1, \frac{1}{2}\right)$ satisfies the equation $k x+y=1$
$\therefore \quad$ Put $x=1$, and $y=\frac{1}{2}$ in $\mathrm{eq}^{\mathrm{n}} k x+y=1$
we get $k .1+\frac{1}{2}=1 \Rightarrow k=\frac{1}{2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.