Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the sum of the cubes of the roots of the equation $x^3-a x^2+b x-c=0$ is zero, then $a^3+3 c=$
MathematicsQuadratic EquationAP EAMCETAP EAMCET 2023 (17 May Shift 1)
Options:
  • A $-2 a b$
  • B $2 \mathrm{ab}$
  • C $-3 a b$
  • D $3 a b$
Solution:
1289 Upvotes Verified Answer
The correct answer is: $3 a b$
Given: $x^3-a x^2+b x-c=0 ...(i)$
Let $\alpha, \beta \& \gamma$ are the roots equation (i), we get
$\begin{aligned}
& \alpha+\beta+\gamma=a \\
& \alpha \beta+\beta \gamma+\gamma \alpha=b \\
& \alpha \beta \gamma=c
\end{aligned}$
Also, given: $\alpha^3+\beta^3+\gamma^3=0$
$\begin{aligned}
& \Rightarrow(\alpha+\beta+\gamma)\left(\alpha^2+\beta^2+\gamma^2-\alpha \beta-\beta \gamma-\gamma \alpha\right)+3 \alpha \beta \gamma=0 \\
& \Rightarrow a\left((\alpha+\beta+\gamma)^2-3(\alpha \beta+\beta \gamma+\gamma \alpha)\right)+3 c=0 \\
& \Rightarrow a\left[a^2-3 b\right]+3 c=0 \\
& \Rightarrow a^3-3 a b+3 c=0 \Rightarrow a^3+3 c=3 a b
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.