Search any question & find its solution
Question:
Answered & Verified by Expert
If the tangent at $P(1,1)$ on $y^{2}=x(2-x)^{2}$ meets the curve again at $Q$, then $Q$ is
Options:
Solution:
2798 Upvotes
Verified Answer
The correct answer is:
$\left(\frac{9}{4}, \frac{3}{8}\right)$
$\begin{array}{l}
y^{2}=x(2-x)^{2} \Rightarrow y^{2}=x^{3}-4 x^{2}+4 x \ldots \text { (i) } \\
\Rightarrow 2 y \frac{\mathrm{dy}}{\mathrm{dx}}=3 x^{2}-8 x+4 \\
\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{3 x^{2}-8 x+4}{2 y} \\
\Rightarrow\left[\frac{\mathrm{dy}}{\mathrm{dx}}\right]_{\mathrm{P}}=\frac{3-8+4}{2}=-\frac{1}{2}
\end{array}$
$y^{2}=x(2-x)^{2} \Rightarrow y^{2}=x^{3}-4 x^{2}+4 x \ldots$ (i) $\Rightarrow 2 y \frac{\mathrm{dy}}{\mathrm{dx}}=3 x^{2}-8 x+4$ $\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{3 x^{2}-8 x+4}{2 y}$ $\Rightarrow\left[\frac{\mathrm{dy}}{\mathrm{dx}}\right]_{\mathrm{P}}=\frac{3-8+4}{2}=-\frac{1}{2}$ $\therefore$ Equation of tangent at $\mathrm{P}$ is: $y-1=-\frac{1}{2}(x-1)$ $\Rightarrow x+2 y-3=0$ $\Rightarrow x+2 y-3=0$
Using $y=\frac{3-x}{2}$ in (i), we get: $\left(\frac{3-x}{2}\right)^{2}$
$\begin{array}{l}
=x^{3}-4 x^{2}+4 x \\
\Rightarrow 4 x^{3}-17 x^{2}+22 x-9=0 \text {...(ii) }
\end{array}$
which has two roots 1,1 (Because of (ii) being tangent at $(1,1)$ ).
Sum of 3 roots $=\frac{17}{4}$
$\begin{array}{l}
\therefore 3 \mathrm{rd} \text { root }=\frac{17}{4}-2=\frac{9}{4} \\
\text { Then, } y=\frac{3-\frac{9}{4}}{2}=\frac{3}{8} \\
\therefore \mathrm{Q} \text { is }\left(\frac{9}{4}, \frac{3}{8}\right)
\end{array}$
y^{2}=x(2-x)^{2} \Rightarrow y^{2}=x^{3}-4 x^{2}+4 x \ldots \text { (i) } \\
\Rightarrow 2 y \frac{\mathrm{dy}}{\mathrm{dx}}=3 x^{2}-8 x+4 \\
\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{3 x^{2}-8 x+4}{2 y} \\
\Rightarrow\left[\frac{\mathrm{dy}}{\mathrm{dx}}\right]_{\mathrm{P}}=\frac{3-8+4}{2}=-\frac{1}{2}
\end{array}$
$y^{2}=x(2-x)^{2} \Rightarrow y^{2}=x^{3}-4 x^{2}+4 x \ldots$ (i) $\Rightarrow 2 y \frac{\mathrm{dy}}{\mathrm{dx}}=3 x^{2}-8 x+4$ $\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{3 x^{2}-8 x+4}{2 y}$ $\Rightarrow\left[\frac{\mathrm{dy}}{\mathrm{dx}}\right]_{\mathrm{P}}=\frac{3-8+4}{2}=-\frac{1}{2}$ $\therefore$ Equation of tangent at $\mathrm{P}$ is: $y-1=-\frac{1}{2}(x-1)$ $\Rightarrow x+2 y-3=0$ $\Rightarrow x+2 y-3=0$
Using $y=\frac{3-x}{2}$ in (i), we get: $\left(\frac{3-x}{2}\right)^{2}$
$\begin{array}{l}
=x^{3}-4 x^{2}+4 x \\
\Rightarrow 4 x^{3}-17 x^{2}+22 x-9=0 \text {...(ii) }
\end{array}$
which has two roots 1,1 (Because of (ii) being tangent at $(1,1)$ ).
Sum of 3 roots $=\frac{17}{4}$
$\begin{array}{l}
\therefore 3 \mathrm{rd} \text { root }=\frac{17}{4}-2=\frac{9}{4} \\
\text { Then, } y=\frac{3-\frac{9}{4}}{2}=\frac{3}{8} \\
\therefore \mathrm{Q} \text { is }\left(\frac{9}{4}, \frac{3}{8}\right)
\end{array}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.