Search any question & find its solution
Question:
Answered & Verified by Expert
If the temperature of a gas is increased from $27^{\circ} \mathrm{C}$ to $159^{\circ} \mathrm{C}$, then the percentage increase in the rms speed of the gas molecules is
Options:
Solution:
2641 Upvotes
Verified Answer
The correct answer is:
20
$V_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}$ At $27^{\circ} \mathrm{C}=27+273=300 \mathrm{~K}$
$\begin{aligned} & \therefore \mathrm{V}_{\mathrm{rms}_1}=\sqrt{\frac{3 \mathrm{R}(300)}{\mathrm{M}}} \text { and } \mathrm{V}_{\mathrm{rms}_2}=\sqrt{\frac{3 \mathrm{R}(432)}{\mathrm{M}}} \\ & \text { at } \mathrm{T}^{\prime}=159+273=432\end{aligned}$
$\therefore$ Percentage increase in the $\mathrm{r} \mathrm{ms}$ speed
$=\left(\frac{\mathrm{V}_{\mathrm{mms}_2}-\mathrm{V}_{\mathrm{rms}_1}}{\mathrm{~V}_{\mathrm{rms}_1}}\right) \times 100$
$=\frac{\sqrt{\frac{3 R}{M}}(\sqrt{432}-\sqrt{300})}{\sqrt{\frac{3 R}{M}}(\sqrt{300})} \times 100=\left(\frac{20.78-17.32}{17.32}\right) \times 100 \approx 20 \%$
$\begin{aligned} & \therefore \mathrm{V}_{\mathrm{rms}_1}=\sqrt{\frac{3 \mathrm{R}(300)}{\mathrm{M}}} \text { and } \mathrm{V}_{\mathrm{rms}_2}=\sqrt{\frac{3 \mathrm{R}(432)}{\mathrm{M}}} \\ & \text { at } \mathrm{T}^{\prime}=159+273=432\end{aligned}$
$\therefore$ Percentage increase in the $\mathrm{r} \mathrm{ms}$ speed
$=\left(\frac{\mathrm{V}_{\mathrm{mms}_2}-\mathrm{V}_{\mathrm{rms}_1}}{\mathrm{~V}_{\mathrm{rms}_1}}\right) \times 100$
$=\frac{\sqrt{\frac{3 R}{M}}(\sqrt{432}-\sqrt{300})}{\sqrt{\frac{3 R}{M}}(\sqrt{300})} \times 100=\left(\frac{20.78-17.32}{17.32}\right) \times 100 \approx 20 \%$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.