Search any question & find its solution
Question:
Answered & Verified by Expert
If the term independent of $x$ in the expansion of $\left(\sqrt{\mathrm{x}}-\frac{\mathrm{k}}{\mathrm{x}^2}\right)^{10}$ is 405 , then $k=$
Options:
Solution:
2014 Upvotes
Verified Answer
The correct answer is:
$\pm 3$
$\left(\sqrt{x}-\frac{K}{x^2}\right)^{10}$
$\begin{aligned} & T_{r+1}={ }^{10} C_r(\sqrt{x})^{10-r}\left(\frac{-K}{x^2}\right)^r \\ & ={ }^{10} C_r(-K)^r x^{\frac{10-r}{2}-2 r} \Rightarrow \frac{10-r}{2}-2 r=0 \\ & r=2 \\ & \therefore T_3={ }^{10} C_2(\sqrt{x})^8\left(\frac{-K}{x^2}\right)^2 \\ & \quad T_3={ }^{10} C_2 \cdot K^2=405 \\ & \Rightarrow 45 K^2=405 \\ & \Rightarrow K^2=9 \Rightarrow K= \pm 3 .\end{aligned}$
$\begin{aligned} & T_{r+1}={ }^{10} C_r(\sqrt{x})^{10-r}\left(\frac{-K}{x^2}\right)^r \\ & ={ }^{10} C_r(-K)^r x^{\frac{10-r}{2}-2 r} \Rightarrow \frac{10-r}{2}-2 r=0 \\ & r=2 \\ & \therefore T_3={ }^{10} C_2(\sqrt{x})^8\left(\frac{-K}{x^2}\right)^2 \\ & \quad T_3={ }^{10} C_2 \cdot K^2=405 \\ & \Rightarrow 45 K^2=405 \\ & \Rightarrow K^2=9 \Rightarrow K= \pm 3 .\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.