Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the term independent of $x$ in the expansion of $\left(\sqrt{\mathrm{x}}-\frac{\mathrm{k}}{\mathrm{x}^2}\right)^{10}$ is 405 , then $k=$
MathematicsBinomial TheoremTS EAMCETTS EAMCET 2023 (12 May Shift 1)
Options:
  • A $\pm 1$
  • B $0$
  • C $\pm 3$
  • D $\pm 5$
Solution:
2014 Upvotes Verified Answer
The correct answer is: $\pm 3$
$\left(\sqrt{x}-\frac{K}{x^2}\right)^{10}$
$\begin{aligned} & T_{r+1}={ }^{10} C_r(\sqrt{x})^{10-r}\left(\frac{-K}{x^2}\right)^r \\ & ={ }^{10} C_r(-K)^r x^{\frac{10-r}{2}-2 r} \Rightarrow \frac{10-r}{2}-2 r=0 \\ & r=2 \\ & \therefore T_3={ }^{10} C_2(\sqrt{x})^8\left(\frac{-K}{x^2}\right)^2 \\ & \quad T_3={ }^{10} C_2 \cdot K^2=405 \\ & \Rightarrow 45 K^2=405 \\ & \Rightarrow K^2=9 \Rightarrow K= \pm 3 .\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.