Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the third term in the expansion of $\left[\mathrm{x}+\mathrm{x}^{\log _{10} \mathrm{x}}\right]^{5}$

is $10^{6},$ then $\mathrm{x}$ may be
MathematicsBinomial TheoremBITSATBITSAT 2016
Options:
  • A 1
  • B $\sqrt{10}$
  • C 10
  • D $10^{-2 / 5}$
Solution:
1941 Upvotes Verified Answer
The correct answer is: 10
Put $\log _{10} x=y,$ the given expression becomes $\left(x+x^{y}\right)^{5}$

$\mathrm{T}_{3}={ }^{5} \mathrm{C}_{2} \cdot \mathrm{x}^{3}\left(\mathrm{x}^{\mathrm{y}}\right)^{2}=10 \mathrm{x}^{3+2 \mathrm{y}}=10^{6}$ (given)

$\Rightarrow(3+2 \mathrm{y}) \log _{10} \mathrm{x}=5 \log _{10} 10=5$

$\Rightarrow(3+2 \mathrm{y}) \mathrm{y}=5$

$\Rightarrow \mathrm{y}=1,-\frac{5}{2}$

$\Rightarrow \log _{10} \mathrm{x}=1$ or $\log _{10} \mathrm{x}=-\frac{5}{2}$

$\therefore \mathrm{x}=10$ or $\mathrm{x}=(10)^{-5 / 2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.