Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the two circles, $x^2+y^2+2 g_1 x+2 f_1 y=0$ and $x^2+y^2+2 g_2 x+2 f_2 y=0$ touches each other, then
MathematicsCircleJEE Main
Options:
  • A $f_1 g_1=f_2 g_2$
  • B $\frac{f_1}{g_1}=\frac{f_2}{g_2}$
  • C $f_1 f_2=g_1 g_2$
  • D None of these
Solution:
2641 Upvotes Verified Answer
The correct answer is: $\frac{f_1}{g_1}=\frac{f_2}{g_2}$
Since the 2 circles touch each other
$\mathrm{C}_1 \mathrm{C}_2=\mathrm{r}_1 \pm \mathrm{r}_2$
$\begin{aligned} & \Rightarrow \sqrt{\left(g_1-g_2\right)^2+\left(f_1-f_2\right)^2}=\sqrt{g_1^2+f_1^2} \pm \sqrt{g_2^2+f_2^2} \\ & -2 g_1 g_2-2 f_1 f_2= \pm 2\left(\sqrt{g_1^2+f_1^2}\right)\left(\sqrt{g_2^2+f_2^2}\right) \\ & \left(g_1 g_2\right)^2+\left(f_1 f_2\right)^2+2 g_1 g_2 f_1 f_2=\left(g_1 g_2\right)^2+\left(f_1 f_2\right)^2+\left(g_1 f_2\right. \\ & 2=\frac{g_1 f_2}{g_2 f_1}+\frac{g_2 f_1}{g_1 f_2} \\ & \text { Let } \frac{g_1 f_2}{g_2 f_1}=a \\ & \Rightarrow 2=a+\frac{1}{a} \Rightarrow a^2+-2 a+1=0 \\ & \rightarrow a=1 \rightarrow \frac{g_1 f_2}{g_2 f_1}=1\end{aligned}$
$\frac{f_1}{g_1}=\frac{f_2}{g_2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.