Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the vectors $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are coplanar, then $\left|\begin{array}{ccc}a & b & c \\ a \cdot a & a \cdot b & a \cdot c \\ b \cdot a & b \cdot b & b \cdot c\end{array}\right|$ is equal to
MathematicsVector AlgebraMHT CETMHT CET 2011
Options:
  • A 1
  • B $\underline{0}$
  • C $-1$
  • D None of these
Solution:
1219 Upvotes Verified Answer
The correct answer is: $\underline{0}$
Since, $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$ are coplanar, there must exists three scalars $x, y$ and $z$ are not all zero such that
$$
x \mathbf{a}+y \mathbf{b}+z \mathbf{c}=0
$$
Multiplying both sides of Eq. (i) by a and $\mathbf{b}$ respectively, we get
$$
\begin{array}{l}
x \mathbf{a} \cdot \mathbf{a}+y \mathbf{a} \cdot \mathbf{b}+z \mathbf{a} \cdot \mathbf{c}=0 \\
x \mathbf{b} \cdot \mathbf{a}+y \mathbf{b} \cdot \mathbf{b}+z \mathbf{b} \cdot \mathbf{c}=0
\end{array}
$$
Eliminating $x, y$ and $z$ from Eqs. (i), (ii) and
(iii), we get
$$
\left|\begin{array}{ccc}
\mathbf{a} & \mathbf{b} & \mathbf{c} \\
\mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\
\mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{c}
\end{array}\right|=0
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.