Search any question & find its solution
Question:
Answered & Verified by Expert
If the vectors $\mathrm{AB}=-3 \mathbf{i}+4 \mathbf{k}$ and $\mathrm{AC}=5 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k}$ are the sides of a $\triangle A B C$, then the length of the median through $A$ is
Options:
Solution:
1460 Upvotes
Verified Answer
The correct answer is:
$\sqrt{18}$
$\therefore$ Position vector of $\mathrm{AD}$

$\begin{aligned} & =\frac{1(-3 \mathbf{i}+4 \mathbf{k})+1(5 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k})}{1+1} \\ & =\mathbf{i}-\mathbf{j}+4 \mathbf{k} \\ & \therefore|\mathrm{AD}|=\sqrt{1+1+16}=\sqrt{18}\end{aligned}$

$\begin{aligned} & =\frac{1(-3 \mathbf{i}+4 \mathbf{k})+1(5 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k})}{1+1} \\ & =\mathbf{i}-\mathbf{j}+4 \mathbf{k} \\ & \therefore|\mathrm{AD}|=\sqrt{1+1+16}=\sqrt{18}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.