Search any question & find its solution
Question:
Answered & Verified by Expert
If the vectors $\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}, \lambda \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ are orthogonal to each other, then $\lambda$ is equal to
Options:
Solution:
2604 Upvotes
Verified Answer
The correct answer is:
$8$
Let $\mathbf{a}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}$ and
$\mathbf{b}=\lambda \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+\hat{\mathbf{k}}$
Since, $\mathbf{a}$ and $\mathbf{b}$ are orthogonal to each other
$\begin{array}{lc}
\therefore & \mathbf{a} \cdot \mathbf{b}=0 \\
\Rightarrow & (\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}) \cdot(\lambda \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\hat{\mathbf{k}})=0 \\
\Rightarrow & \lambda-12+4=0 \Rightarrow \lambda=8
\end{array}$
$\mathbf{b}=\lambda \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+\hat{\mathbf{k}}$
Since, $\mathbf{a}$ and $\mathbf{b}$ are orthogonal to each other
$\begin{array}{lc}
\therefore & \mathbf{a} \cdot \mathbf{b}=0 \\
\Rightarrow & (\hat{\mathbf{i}}+3 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}) \cdot(\lambda \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\hat{\mathbf{k}})=0 \\
\Rightarrow & \lambda-12+4=0 \Rightarrow \lambda=8
\end{array}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.