Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the vertex of the conic $y^{2}-4 y=4 x-4 a$ always lies between the straight lines $x+y=3$ and $2 x+2 y-1=0 .$ then
MathematicsParabolaWBJEEWBJEE 2015
Options:
  • A $2 < a < 4$
  • B $-\frac{1}{2} < a < 2$
  • C $0 < a < 2$
  • D $-\frac{1}{2} < a < \frac{3}{2}$
Solution:
2708 Upvotes Verified Answer
The correct answer is: $-\frac{1}{2} < a < 2$
We have, $y^{2}-4 y=4 x-4 a$ $\Rightarrow \quad(y-2)^{2}-4=4 x-4 a$
$\Rightarrow \quad(y-2)^{2}=4 x-4 a+4$
$\Rightarrow \quad(y-2)^{2}=4|x-(a-1)|$
Hence, vertex is $(a-1,2)$
Since, vertex lies between the lines $x+y=3$ and $2 x+2 y-1=0,$ then
$(a-1+2-3)(2 a-2+4-1) < 0$
$\Rightarrow(a-2)(2 a+1) < 0 \Rightarrow a \in\left(-\frac{1}{2}, 2\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.