Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If the water is being poured at the rate $36 \mathrm{~m}^3 / \mathrm{sec}$ in cylindrical vessel of base radius $3 \mathrm{~m}$, then the rate at which water level is rising, is
MathematicsApplication of DerivativesMHT CETMHT CET 2022 (08 Aug Shift 1)
Options:
  • A $\frac{4}{\pi} \mathrm{m} / \mathrm{sec}$
  • B $4 \pi \mathrm{m} / \mathrm{sec}$
  • C $\frac{\pi}{4} \mathrm{~m} / \mathrm{sec}$
  • D $\frac{3}{\pi} \mathrm{m} / \mathrm{sec}$
Solution:
1012 Upvotes Verified Answer
The correct answer is: $\frac{4}{\pi} \mathrm{m} / \mathrm{sec}$
$\frac{\mathrm{d} v}{\mathrm{~d} t}=36 \mathrm{~m}^3 / \mathrm{sec}$
and $v=\pi r^2 \mathrm{~h}=\pi \times 3^2 \mathrm{~h}=9 \pi \mathrm{h}$
$\Rightarrow \frac{\mathrm{d} v}{\mathrm{~d} t}=9 \pi \frac{\mathrm{d} h}{\mathrm{~d} t}$
$\Rightarrow 36=9 \pi \frac{\mathrm{d} h}{\mathrm{~d} t}$
$\Rightarrow \frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{4}{\pi} \mathrm{m} / \mathrm{sec}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.