Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If there exists a $\mathrm{k}^{\text {th }}$ order non-singular sub matrix in matrix $\mathrm{P}$ of order $\mathrm{m} \times \mathrm{n}$, then the rank $(\rho)$ of $\mathrm{P}$
MathematicsMatricesAP EAMCETAP EAMCET 2023 (16 May Shift 1)
Options:
  • A satisfies $\mathrm{k} \leq \rho \leq \mathrm{m}$
  • B satisfies $\mathrm{k} < \rho < $ n
  • C satisfies $\mathrm{k} \leq \rho \leq \min \{\mathrm{m}, \mathrm{n}\}$
  • D is equal to $\mathrm{k}+1$
Solution:
1841 Upvotes Verified Answer
The correct answer is: satisfies $\mathrm{k} \leq \rho \leq \min \{\mathrm{m}, \mathrm{n}\}$
$\because$ The order of the matrix $P$ is $m \times n$.
$\therefore$ Rank of $P$ i.e. $\rho \leq \min (m, n)$ ...(i)
Also, there exist a $k^{\text {th }}$ order non-singular sub matrix.
$\Rightarrow \quad \rho \geq k$ ...(ii)
Combining eqn. (i) and (ii), we get :
$k \leq \rho \leq \min (m, n)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.