Search any question & find its solution
Question:
Answered & Verified by Expert
If two circles $x^2+y^2-6 x-6 y+13=0$ and $x^2+y^2-8 y$ $+9=0$ intersect at $\mathrm{A}$ and $\mathrm{B}$, then the focus of the parabola whose directrix is the line $A B$ and vertex is the point $O$ $(0,0)$ is
Options:
Solution:
2067 Upvotes
Verified Answer
The correct answer is:
$\left(-\frac{3}{5}, \frac{1}{5}\right)$
$C_1: x^2+y^2-6 x-6 y+13=0$
$C_2: x^2+y^2-8 y+9=0$
Equation of common chord $A B \equiv C_1-C_2=0$
$\begin{aligned}
& \therefore-6 x-6 y+13+8 y-9=0 \\
& \Rightarrow 6 x-2 y=4 \\
& \Rightarrow 3 x-y=2
\end{aligned}$
$\therefore \quad$ Directrix is $3 x-y-2=0 ... (i)$
$m_D=3$
$\therefore \quad$ Slope of axis $=\frac{-1}{3}$
Equation of axis $\Rightarrow y=\frac{-1}{3} x$
$\Rightarrow x+3 y=0... (ii)$
$\therefore \quad$ Foot of perpendicular on directrix is intersection of directrix and axis.
$\therefore \quad$ From (i) and (ii),
$x=\frac{3}{5}, y=\frac{-1}{5}$

$\begin{aligned} & \therefore \quad \frac{\alpha+\frac{3}{5}}{2}=0 \Rightarrow \alpha=\frac{-3}{5} \\ & \Rightarrow \frac{\beta-\frac{1}{5}}{2}=0 \Rightarrow \beta=\frac{1}{5}\end{aligned}$
$\therefore \quad$ Focus is $\left(\frac{-3}{5}, \frac{1}{5}\right)$.
$C_2: x^2+y^2-8 y+9=0$
Equation of common chord $A B \equiv C_1-C_2=0$
$\begin{aligned}
& \therefore-6 x-6 y+13+8 y-9=0 \\
& \Rightarrow 6 x-2 y=4 \\
& \Rightarrow 3 x-y=2
\end{aligned}$
$\therefore \quad$ Directrix is $3 x-y-2=0 ... (i)$
$m_D=3$
$\therefore \quad$ Slope of axis $=\frac{-1}{3}$
Equation of axis $\Rightarrow y=\frac{-1}{3} x$
$\Rightarrow x+3 y=0... (ii)$
$\therefore \quad$ Foot of perpendicular on directrix is intersection of directrix and axis.
$\therefore \quad$ From (i) and (ii),
$x=\frac{3}{5}, y=\frac{-1}{5}$

$\begin{aligned} & \therefore \quad \frac{\alpha+\frac{3}{5}}{2}=0 \Rightarrow \alpha=\frac{-3}{5} \\ & \Rightarrow \frac{\beta-\frac{1}{5}}{2}=0 \Rightarrow \beta=\frac{1}{5}\end{aligned}$
$\therefore \quad$ Focus is $\left(\frac{-3}{5}, \frac{1}{5}\right)$.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.