Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $u+i v=\frac{3 i}{x+i y+2}$, then $y=$
MathematicsComplex NumberJEE Main
Options:
  • A $\frac{9 u}{u^2+v^2}$
  • B $\frac{3 u}{u^2+v^2}$
  • C $\frac{6 u}{u^2+v^2}$
  • D $\frac{12 u}{u^2+v^2}$
Solution:
2242 Upvotes Verified Answer
The correct answer is: $\frac{3 u}{u^2+v^2}$
$$
\begin{aligned}
& \text {We have, } u+i v=\frac{3 i}{x+i y+2} \\
& \Rightarrow x+i y+2=\frac{3 i}{u+i v} \\
& \Rightarrow(x+2)+i y=\frac{3 i}{u+i v}+\frac{u-i v}{u-i v}=\frac{3 u i-3 v\left(i^2\right)}{u^2-(i v)^2} \\
& \Rightarrow(x+2)+i y=\frac{3 u i+3 v}{u^2+v^2} \\
& \Rightarrow(x+2)+i y=\frac{3 v}{u^2+v^2}+\frac{3 u}{u^2+v^2} i
\end{aligned}
$$
by comparing Imaginary parts
$$
y=\frac{3 u}{u^2+v^2}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.