Search any question & find its solution
Question:
Answered & Verified by Expert
If $\vec{u}, \vec{v}$ and $\vec{w}$ are three non-coplanar vectors, then $(\vec{u}+\vec{v}-\vec{w}) .(\vec{u}-\vec{v}) \times(\vec{v}-\vec{w})$ equals
Options:
Solution:
1983 Upvotes
Verified Answer
The correct answer is:
$\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}}$
$\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}}$
$(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{w}}) \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{w}}-\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{v}}+\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}})$
$(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{w}}) \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{w}}+\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}})=\frac{\overrightarrow{\mathrm{u}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}})}{0}$
$-\frac{\overrightarrow{\mathrm{u}} .(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{w}})}{0}+\overrightarrow{\mathrm{u}} .(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}})+\frac{\overrightarrow{\mathrm{v}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}})}{0}-\overrightarrow{\mathrm{v}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{w}})$
$+\frac{\overrightarrow{\mathrm{v}} \cdot(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}})}{0}-\overrightarrow{\mathrm{w}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}})+\frac{\overrightarrow{\mathrm{w}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{w}})}{0}-\frac{\overrightarrow{\mathrm{w}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{w}})}{0}=\overrightarrow{\mathrm{u}} \cdot(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}})-\overrightarrow{\mathrm{v}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{w}})-\overrightarrow{\mathrm{w}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}})$
$=[\overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{w}}]+[\overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{w}} \overrightarrow{\mathrm{u}}]-[\overrightarrow{\mathrm{w}} \overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{v}}]=\overrightarrow{\mathrm{u}} .(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}})$
$(\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{w}}) \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{w}}+\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}})=\frac{\overrightarrow{\mathrm{u}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}})}{0}$
$-\frac{\overrightarrow{\mathrm{u}} .(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{w}})}{0}+\overrightarrow{\mathrm{u}} .(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}})+\frac{\overrightarrow{\mathrm{v}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}})}{0}-\overrightarrow{\mathrm{v}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{w}})$
$+\frac{\overrightarrow{\mathrm{v}} \cdot(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}})}{0}-\overrightarrow{\mathrm{w}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}})+\frac{\overrightarrow{\mathrm{w}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{w}})}{0}-\frac{\overrightarrow{\mathrm{w}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{w}})}{0}=\overrightarrow{\mathrm{u}} \cdot(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}})-\overrightarrow{\mathrm{v}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{w}})-\overrightarrow{\mathrm{w}} \cdot(\overrightarrow{\mathrm{u}} \times \overrightarrow{\mathrm{v}})$
$=[\overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{w}}]+[\overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{w}} \overrightarrow{\mathrm{u}}]-[\overrightarrow{\mathrm{w}} \overrightarrow{\mathrm{u}} \overrightarrow{\mathrm{v}}]=\overrightarrow{\mathrm{u}} .(\overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{w}})$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.