Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $u(x, y)=y \log x+x \log y$, then $u_x u_y-u_x \log x-u_y \log y+\log x \log y$ is equal to :
MathematicsDifferentiationTS EAMCETTS EAMCET 2003
Options:
  • A 0
  • B -1
  • C 1
  • D 2
Solution:
1055 Upvotes Verified Answer
The correct answer is: 1
We have,
$u(x, y)=y \log x+x \log y$
On differentiating partially w.r.t. $x$ and $y$ respectively,
$u_x=\frac{y}{x}+\log y, u_y=\log x+\frac{x}{y}$
Now, $u_x u_y-u_x \log x-u_y \log y+\log x \log y$
$=\left(\frac{y}{x}+\log y\right)\left(\log x+\frac{x}{y}\right)-\left(\frac{y}{x}+\log y\right) \log x$ $-\left(\log x+\frac{x}{y}\right) \log y+\log x \log y$
$=1+\frac{y}{x} \log x+\frac{x}{y} \log y+\log x \log y$
$-\frac{y}{x} \log x-\log x \log y-\log x \log y$
$-\frac{x}{y} \log y+\log x \log y$
$=1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.