Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $x>0$ and $\log _{3} x+\log _{3}(\sqrt{x})+\log _{3}(\sqrt[4]{x})+$ $\log _{3}(\sqrt[8]{x})+\log _{3}(\sqrt[16]{x})+\ldots=4$, then $x$ equals
MathematicsQuadratic EquationVITEEEVITEEE 2007
Options:
  • A 9
  • B 81
  • C 1
  • D 27
Solution:
1546 Upvotes Verified Answer
The correct answer is: 9
Given: $\log _{3} x+\log _{3}(\sqrt{x})+\log _{3}(\sqrt[4]{x})$
$\quad+\log _{3} \sqrt[8]{x}+\log _{3}(\sqrt[16]{x})+-=4$
$\Rightarrow \log _{3} x^{1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+--\infty}=4$
$\Rightarrow \log _{3} x^{\frac{1}{1-\frac{1}{2}}}=4 \quad\left[\because \mathrm{S}_{\infty}=\frac{\mathrm{a}}{1-\mathrm{r}}\right]$
$\Rightarrow \log _{3} \mathrm{x}^{2}=4 \Rightarrow \mathrm{x}^{2}=3^{4} \Rightarrow \mathrm{x}=9$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.