Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{X}=\left[\begin{array}{cc}1 & -2 \\ 0 & 3\end{array}\right]$, and $\mathrm{I}$ is a $2 \times 2$ identity matrix, then $\mathrm{X}^{2}-2 \mathrm{X}$ $+3$ I equals to which one of the following?
MathematicsMatricesNDANDA 2008 (Phase 1)
Options:
  • A $-\mathrm{I}$
  • B $-2 \mathrm{X}$
  • C $2 X$
  • D $4 \mathrm{X}$
Solution:
2657 Upvotes Verified Answer
The correct answer is: $2 X$
Given matrix is :
$\mathrm{X}=\left[\begin{array}{cc}1 & -2 \\ 0 & 3\end{array}\right]$
$\therefore \mathrm{X}^{2}=\left[\begin{array}{cc}1 & -2 \\ 0 & 3\end{array}\right]\left[\begin{array}{cc}1 & -2 \\ 0 & 3\end{array}\right]$
$=\left[\begin{array}{cc}1 & -2-6 \\ 0 & 9\end{array}\right]=\left[\begin{array}{cc}1 & -8 \\ 0 & 9\end{array}\right]$
So, the given expression is:
$\mathrm{X}^{2}-2 \mathrm{X}+3 \mathrm{I}=\left[\begin{array}{cc}1 & -8 \\ 0 & 9\end{array}\right]-2\left[\begin{array}{cc}1 & -2 \\ 0 & 3\end{array}\right]+3\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$=\left[\begin{array}{cc}1 & -8 \\ 0 & 9\end{array}\right]+\left[\begin{array}{cc}-2 & +4 \\ 0 & -6\end{array}\right]+\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$
$=\left[\begin{array}{cc}1-2+3 & -8+4 \\ 0 & 9-6+3\end{array}\right]=\left[\begin{array}{cc}2 & -4 \\ 0 & 6\end{array}\right]=2\left[\begin{array}{cc}1 & -2 \\ 0 & 3\end{array}\right]=2 \mathrm{X}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.