Search any question & find its solution
Question:
Answered & Verified by Expert
If $x=\frac{5}{1-2 \mathrm{i}}, \mathrm{i}=\sqrt{-1}$, then the value of $x^3+x^2-x+22$ is
Options:
Solution:
2110 Upvotes
Verified Answer
The correct answer is:
$7$
$\begin{aligned} & x=\frac{5}{1-2 \mathrm{i}}=\frac{5(1+2 \mathrm{i})}{1+4}=1+2 \mathrm{i} \\ & \therefore \quad x^2=(1+2 \mathrm{i})^2=1-4+4 \mathrm{i}=-3+4 \mathrm{i} \\ & \therefore \quad x^3=(-3+4 \mathrm{i})(1+2 \mathrm{i}) \\ & =-3-6 i+4 i-8 \\ & =-11-2 \mathrm{i} \\ & \therefore \quad x^3+x^2-x+22 \\ & =(-11-2 \mathrm{i})+(-3+4 \mathrm{i})-(1+2 \mathrm{i})+22 \\ & =-11-2 \mathrm{i}-3+4 \mathrm{i}-1-2 \mathrm{i}+22 \\ & =7 \\ & \end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.