Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{x}_{1}$ and $\mathrm{x}_{2}$ are positive quantities, then the condition for the difference between the arithmetic mean and the geometric mean to be greater than 1 is
MathematicsSequences and SeriesNDANDA 2017 (Phase 2)
Options:
  • A $x_{1}+x_{2}>2 \sqrt{x_{1} x_{2}}$
  • B $\sqrt{\mathrm{x}_{1}}+\sqrt{\mathrm{x}_{2}}>\sqrt{2}$
  • C $\left|\sqrt{\mathrm{x}_{1}}+\sqrt{\mathrm{x}_{2}}\right|>\sqrt{2}$
  • D $x_{1}+x_{2} < 2\left(\sqrt{x_{1} x_{2}}+1\right)$
Solution:
1865 Upvotes Verified Answer
The correct answer is: $\left|\sqrt{\mathrm{x}_{1}}+\sqrt{\mathrm{x}_{2}}\right|>\sqrt{2}$
Arithmetic mean of $\mathrm{x}_{1}, \mathrm{x}_{2}=\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}$
Geometric mean of $\mathrm{x}_{1}, \mathrm{x}_{2}=\sqrt{\mathrm{x}_{1} \mathrm{x}_{2}}$
Given, $\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}-\sqrt{\mathrm{x}_{1} \mathrm{x}_{2}}>1$
$\Rightarrow \frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}>\sqrt{\mathrm{x}_{1} \mathrm{x}_{2}}+1$
$\Rightarrow \mathrm{x}_{1}+\mathrm{x}_{2}>2 \sqrt{\mathrm{x}_{1} \mathrm{x}_{2}}+2$
$\Rightarrow \mathrm{x}_{1}+\mathrm{x}_{2}-2 \sqrt{\mathrm{x}_{1} \mathrm{x}_{2}}>2$
$\Rightarrow\left(\sqrt{\mathrm{x}_{1}}\right)^{2}+\left(\sqrt{\mathrm{x}_{2}}\right)^{2}-2 \sqrt{\mathrm{x}_{1}} \sqrt{\mathrm{x}_{2}}>2$
$\Rightarrow\left(\sqrt{\mathrm{x}_{1}}-\sqrt{\mathrm{x}_{2}}\right)^{2}>2$
$\Rightarrow\left|\sqrt{\mathrm{x}_{1}}-\sqrt{\mathrm{x}_{2}}\right|>\sqrt{2}$
Correct option (c).

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.