Search any question & find its solution
Question:
Answered & Verified by Expert
If $x=\frac{1-t^{2}}{1+t^{2}}$ and $y=\frac{2 t}{1+t^{2}}$, then $\frac{d y}{d x}$ is equal to :
Options:
Solution:
2422 Upvotes
Verified Answer
The correct answer is:
$-\frac{x}{y}$
Let $x=\frac{1-t^{2}}{1+t^{2}}$ and $y=\frac{2 t}{1+t^{2}}$
Put $t=\tan \theta$, we get
$x=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$ and $y=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$
$\Rightarrow x=\cos 2 \theta$ and $y=\sin 2 \theta$
$\therefore \frac{\mathrm{dx}}{\mathrm{d} \theta}=-2 \sin 2 \theta$ and $\frac{\mathrm{dy}}{\mathrm{d} \theta}=2 \cos 2 \theta$
Now, $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{d} \theta} \times \frac{\mathrm{d} \theta}{\mathrm{dx}}=-\frac{\cos 2 \theta}{\sin 2 \theta}=-\frac{x}{y}$
Put $t=\tan \theta$, we get
$x=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$ and $y=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$
$\Rightarrow x=\cos 2 \theta$ and $y=\sin 2 \theta$
$\therefore \frac{\mathrm{dx}}{\mathrm{d} \theta}=-2 \sin 2 \theta$ and $\frac{\mathrm{dy}}{\mathrm{d} \theta}=2 \cos 2 \theta$
Now, $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{d} \theta} \times \frac{\mathrm{d} \theta}{\mathrm{dx}}=-\frac{\cos 2 \theta}{\sin 2 \theta}=-\frac{x}{y}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.