Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $x=\frac{1-t^{2}}{1+t^{2}}$ and $y=\frac{2 t}{1+t^{2}}$, then $\frac{d y}{d x}$ is equal to :
MathematicsDifferentiationJEE Main
Options:
  • A $-\frac{y}{x}$
  • B $\frac{y}{x}$
  • C $-\frac{x}{y}$
  • D $\frac{x}{y}$
Solution:
2422 Upvotes Verified Answer
The correct answer is: $-\frac{x}{y}$
Let $x=\frac{1-t^{2}}{1+t^{2}}$ and $y=\frac{2 t}{1+t^{2}}$

Put $t=\tan \theta$, we get

$x=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$ and $y=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$

$\Rightarrow x=\cos 2 \theta$ and $y=\sin 2 \theta$

$\therefore \frac{\mathrm{dx}}{\mathrm{d} \theta}=-2 \sin 2 \theta$ and $\frac{\mathrm{dy}}{\mathrm{d} \theta}=2 \cos 2 \theta$

Now, $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{d} \theta} \times \frac{\mathrm{d} \theta}{\mathrm{dx}}=-\frac{\cos 2 \theta}{\sin 2 \theta}=-\frac{x}{y}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.