Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\int \frac{3 x+1}{(x-1)(x-2)(x-3)} d x A \log |x-1| B$ $\log |x-2|+C \log |x-3|+C$, then the values of $A, B$ and $C$ are respectively
MathematicsDefinite IntegrationKCETKCET 2020
Options:
  • A $5,-7,-5$
  • B $2,-7,-5$
  • C $5,-7,5$
  • D $2,-7,5$
Solution:
1182 Upvotes Verified Answer
The correct answer is: $2,-7,5$
We have,
$\int \frac{3 x+1}{(x-1)(x-2)(x-3)} d x$
Let $\frac{3 x+1}{(x-1)(x-2)(x-3)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-3}$
$\Rightarrow \quad(3 x+1)=A(x-2)(x-3)+B(x-1)(x-3)$
$+C(x-1)(x-2)$
Put $x-1=0$
$\Rightarrow \quad x=1$
Then, $3 \times 1+1=A(-1)(-2)$
$\Rightarrow \quad 4=2 A$
$\Rightarrow \quad A=2$
Put $\quad x-2=0$
$\Rightarrow \quad x=2$
Then, $7=B(2-1)(2-3)$
$\Rightarrow \quad 7=B(1)(-1)$
$\Rightarrow \quad B=-7$
And put $x-3=0$
$\Rightarrow \quad x=3$
Then, $10=C(3-1)(3-2)$
$\Rightarrow \quad 10=C(2)(1)$
$\Rightarrow \quad C=5$
$\therefore \quad \frac{3 x+1}{(x-1)(x-2)(x-3)}=\frac{2}{x-1}-\frac{7}{x-2}+\frac{5}{x-3}$
$\therefore \quad \int \frac{3 x+1}{(x-1)(x-2)(x-3)} d x$
$\quad=\int \frac{2}{x-1} d x-\int \frac{7}{x-2} d x+\int \frac{5}{x-3} d x$
$\Rightarrow \quad \int \frac{3 x+1}{(x-1)(x-2)(x-3)} d x$
$=2 \log |x-1|-7 \log |x-2|+5 \log |x-3|+C$
$=A \log |x-1|+B \log |x-2|+C \log |x-3|+C$
$($ Given $)$
$\Rightarrow A=2, B=-7, C=5$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.