Search any question & find its solution
Question:
Answered & Verified by Expert
If $\left|\begin{array}{lll}\mathrm{x}+1 & \mathrm{x}+2 & \mathrm{x}+\mathrm{a} \\ \mathrm{x}+2 & \mathrm{x}+3 & \mathrm{x}+\mathrm{b} \\ \mathrm{x}+3 & \mathrm{x}+4 & \mathrm{x}+\mathrm{c}\end{array}\right|=0$, then $a, b, c$ are
Options:
Solution:
1816 Upvotes
Verified Answer
The correct answer is:
in AP
Given, $\left|\begin{array}{lll}x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{array}\right|=0$
Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{3}-2 \mathrm{R}_{2}$, we get
$$
\begin{aligned}
&\quad\left|\begin{array}{ccc}
0 & 0 & a+c-2 b \\
x+2 & x+3 & x+b \\
x+3 & x+4 & x+c
\end{array}\right|=0 \\
&\Rightarrow(a+c-2 b)\left[x^{2}+6 x+8-\left(x^{2}+6 x+9\right)\right] \\
&\Rightarrow \quad(a+c-2 b)(-1)=0 \\
&\Rightarrow \quad 2 b=a+c \\
&\Rightarrow \quad a, b, c \text { are in AP. }
\end{aligned}
$$
Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{3}-2 \mathrm{R}_{2}$, we get
$$
\begin{aligned}
&\quad\left|\begin{array}{ccc}
0 & 0 & a+c-2 b \\
x+2 & x+3 & x+b \\
x+3 & x+4 & x+c
\end{array}\right|=0 \\
&\Rightarrow(a+c-2 b)\left[x^{2}+6 x+8-\left(x^{2}+6 x+9\right)\right] \\
&\Rightarrow \quad(a+c-2 b)(-1)=0 \\
&\Rightarrow \quad 2 b=a+c \\
&\Rightarrow \quad a, b, c \text { are in AP. }
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.