Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $|\mathrm{x}| < \frac{1}{2}$, what is the value of
$1+n\left[\frac{x}{1-x}\right]+\left[\frac{n(n+1)}{2 !}\right]\left[\frac{x}{1-x}\right]^{2}+\ldots \ldots \ldots \ldots \ldots \infty ?$
MathematicsSequences and SeriesNDANDA 2006 (Phase 2)
Options:
  • A $\left[\frac{1-x}{1-2 x}\right]^{n}$
  • B $(1-x)^{n}$
  • C $\left[\frac{1-2 x}{1-x}\right]^{n} \quad$
  • D $\left(\frac{1}{1-x}\right)^{n}$
Solution:
1826 Upvotes Verified Answer
The correct answer is: $\left[\frac{1-x}{1-2 x}\right]^{n}$
Given that $1+\mathrm{n}\left[\frac{\mathrm{x}}{1-\mathrm{x}}\right]+\frac{\mathrm{n}(\mathrm{n}+1)}{2 !}\left[\frac{\mathrm{x}}{1-\mathrm{x}}\right]^{2}+\ldots \infty$ is
expansion of $\left[1-\frac{x}{1-x}\right]^{-n}$.
So, it is $=\left[1-\frac{x}{1-x}\right]^{-n}=\left[\frac{1-x-x}{1-x}\right]^{-n}=\left[\frac{1-x}{1-2 x}\right]^{n}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.