Search any question & find its solution
Question:
Answered & Verified by Expert
If $\frac{2 x^2+5 x+6}{(x+2)^3}=\frac{a}{x+2}+\frac{b}{(x+2)^2}+\frac{c}{(x+2)^3}$ then $\mathrm{a} . \mathrm{b}+\mathrm{b} . \mathrm{c}+\mathrm{c} . \mathrm{a}=$
Options:
Solution:
1396 Upvotes
Verified Answer
The correct answer is:
-10
$$
\begin{aligned}
& \text { Given } \frac{2 x^2+5 x+6}{(x+2)^3}=\frac{a}{(x+2)}+\frac{b}{(x+2)^2}+\frac{c}{(x+3)^3} \\
& \Rightarrow 2 x^2+5 x+6=a(x+2)^2+b(x+2)+c \\
& \Rightarrow 2 x^2+5 x+6=x^2(a)+x(4 a+b)+(4 a+2 b+c)
\end{aligned}
$$
Comparing we get,
$$
a=2, b=-3, c=4
$$
Hence
$$
a \cdot b+b \cdot c+c \cdot a=-10
$$
\begin{aligned}
& \text { Given } \frac{2 x^2+5 x+6}{(x+2)^3}=\frac{a}{(x+2)}+\frac{b}{(x+2)^2}+\frac{c}{(x+3)^3} \\
& \Rightarrow 2 x^2+5 x+6=a(x+2)^2+b(x+2)+c \\
& \Rightarrow 2 x^2+5 x+6=x^2(a)+x(4 a+b)+(4 a+2 b+c)
\end{aligned}
$$
Comparing we get,
$$
a=2, b=-3, c=4
$$
Hence
$$
a \cdot b+b \cdot c+c \cdot a=-10
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.